Setting up High Performance Python Environment for Network Analysis
- Use Intel compilers and MKL to compile
NumPy
andSciPy
-
Install Intel C++ and Fortran compilers and MKL, which are free for academic use. Sourse the environment scripts:
$ source /*path-to-mkl*/bin/mklvars.sh intel64 $ source /*path-to-compilers*/linux/bin/compilervars.sh -arch intel64
Check with some commands:
$ icc -v $ echo $LD_LIBRARY_PATH
-
Checkout the latest stable
NumPy
andSciPy
from their Git repositories. -
Inside
numpy/
, create a file namedsite.cfg
and type in the following:[mkl] library_dirs = /*path-to-mkl*/lib/intel64/ include_dirs = /*path-to-mkl*/include/ mkl_libs = mkl_rt lapack_libs =
-
In
numpy/numpy/distutils/intelccompiler.py
, modifyclass IntelEM64TCCompiler
and match the code to something like this:cc_exe = 'icc -m64 -O3 -g -fPIC -fp-model strict -fomit-frame-pointer -openmp -xHost' #cc_args = '-fPIC'
-
In
numpy/numpy/distutils/fcompiler/intel.py
, modifyclass IntelEM64TFCompiler
and match the code to something like this:possible_executables = ['ifort'] def get_flags(self): # Scipy test failures with -O2 or -O3 return ['-O1 -g -xhost -openmp -fp-model strict -fPIC'] def get_flags_opt(self): return [] def get_flags_arch(self): return []
-
In
numpy/
, build and installNumPy
:$ python setup.py build --compiler=intelem | tee build.log $ sudo -H python setup.py install | tee install.log
For some reason, installing without
sudo
causesf2py
not correctly configured. Test if the installisation was successful:$ python >>> import numpy >>> numpy.__version__ >>> numpy.__config__.show() >>> numpy.test()
-
Now
NumPy
is ALREADY installed, let’s build and installSciPy
. Insidescipy/
,$ python setup.py config --compiler=intelem --fcompiler=intelem build_clib --compiler=intelem --fcompiler=intelem build_ext --compiler=intelem --fcompiler=intelem | tee build.log $ python setup.py install --user
Test if the installisation was successful:
$ python >>> import scipy >>> scipy.__version__ >>> scipy.__config__.show() >>> scipy.test()
The python-igraph
in Ubuntu’s default repository is usually outdated. To install the newest one:
-
Install packages
pip
,python-dev
,libxml2-dev
andzlib1g-dev
These packages are needed but not pre-installed in Ubuntu by default.
$ sudo apt-get install -y pip python-dev libxml2-dev zlib1g-dev
-
Use
sudo
when installingigraph
To avoid error
could not create '/usr/local/lib/python2.7/dist-packages/igraph': Permission denied
, use:$ sudo -H pip install python-igraph
-
I had to install
libfreetype6-dev
andlibxft-dev
in order to enablematplotlib
$ sudo apt-get install libfreetype6-dev libxft-dev $ sudo -H pip install matplotlib
I have tried in both Ubuntu 14.04 and 16.04.
Benchmark:
On a server with 8 cores @ 2.9GHz